It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool.
Preface.- Chapter 1.- General elements of genomic selection and statistical learning.- Chapter. 2.- Preprocessing tools for data preparation.- Chapter. 3.- Elements for building supervised statistical machine learning models.- Chapter. 4.- Overfitting, model tuning and evaluation of prediction performance.- Chapter. 5.- Linear Mixed Models.- Chapter. 6.- Bayesian Genomic Linear Regression.- Chapter. 7.- Bayesian and classical prediction models for categorical and count data.- Chapter. 8.- Reproducing Kernel Hilbert Spaces Regression and Classification Methods.- Chapter. 9.- Support vector machines and support vector regression.- Chapter. 10.- Fundamentals of artificial neural networks and deep learning.- Chapter. 11.- Artificial neural networks and deep learning for genomic prediction of continuous outcomes.- Chapter. 12.- Artificial neural networks and deep learning for genomic prediction of binary, ordinal and mixed outcomes.- Chapter. 13.- Convolutional neural networks.- Chapter. 14.- Functional regression.- Chapter. 15.- Random forest for genomic prediction.
Get Multivariate Statistical Machine Learning Methods for Genomic Prediction by at the best price and quality guranteed only at Werezi Africa largest book ecommerce store. The book was published by Springer Nature Switzerland AG and it has pages. Enjoy Shopping Best Offers & Deals on books Online from Werezi - Receive at your doorstep - Fast Delivery - Secure mode of Payment