Search

Categories

    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss

Filter By Price

$
-
$

Dietary Needs

Top Rated Product

product-img product-img

Modern Chair

$165.00
product-img product-img

Plastic Chair

$165.00
product-img product-img

Design Rooms

$165.00

Brands

  • Wooden
  • Chair
  • Modern
  • Fabric
  • Shoulder
  • Winter
  • Accessories
  • Dress

Welcome and thank you for visiting us. For any query call us on 0799 626 359 or Email [email protected]

Offcanvas Menu Open

Shopping Cart

Africa largest book store

Sub Total:

Search for any Title

Heat Transfer Basics : A Concise Approach to Problem Solving

By: Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author) , Jamil Ghojel (Author)

Extended Catalogue

Ksh 19,850.00

Format: Hardback or Cased Book

ISBN-10: 1119840260

ISBN-13: 9781119840268

Publisher: John Wiley & Sons Inc

Imprint: John Wiley & Sons Inc

Country of Manufacture: GB

Country of Publication: GB

Publication Date: Nov 17th, 2023

Publication Status: Active

Product extent: 560 Pages

Weight: 1148.00 grams

Dimensions (height x width x thickness): 18.60 x 26.20 x 3.90 cms

Choose your Location

Shipping & Delivery

Door Delivery

Delivery fee

Delivery in 10 to 14 days

  • Description

  • Reviews

HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.
HEAT TRANSFER BASICS Concise introduction to heat transfer, with a focus on worked example problems to aid in reader comprehension and student learning Heat Transfer Basics covers the essential topics of heat transfer in a focused manner, starting with an introduction to heat transfer that explains its relationship to thermodynamics and fluid mechanics and continuing on to key topics such as free convection, boiling and condensation, radiation, heat exchangers, and more, for an accessible and reader-friendly yet comprehensive treatment of the subject. Each chapter features multiple worked out example problems, including derivations of key governing equations and comparisons of worked solutions with computer modeled results, which helps students become familiar with the types of problems they will encounter in the field. Throughout the book, figures and diagrams liberally illustrate the concepts discussed, and practice problems allow students to test their understanding of the content. The text is accompanied by an online instructor’s manual. Heat Transfer Basics includes information on: One-dimensional, steady-state conduction, covering the plane wall, the composite wall, solid and hollow cylinders and sphere, conduction with and without internal energy generation, and conduction with constant and temperature-dependent thermal conductivity Heat transfer from extended surfaces, fins of uniform and variable cross-sectional area, fin performance, and overall fin efficiencyTransient conduction, covering general lumped capacitance solution method, one- and multi-dimensional transient conduction, and the finite-difference method for solving transient problemsFree and forced convection, covering hydrodynamic and thermal considerations, the energy balance, and thermal analysis and convection correlations More advanced than introductory textbooks yet not as overwhelming as textbooks targeted at specialists, Heat Transfer Basics is ideal for students in introductory and advanced heat transfer courses who do not intend to specialize in heat transfer, and is a helpful reference for advanced students and practicing engineers.

Get Heat Transfer Basics by at the best price and quality guranteed only at Werezi Africa largest book ecommerce store. The book was published by John Wiley & Sons Inc and it has pages. Enjoy Shopping Best Offers & Deals on books Online from Werezi - Receive at your doorstep - Fast Delivery - Secure mode of Payment

Customer Reviews

Based on 0 reviews

Mind, Body, & Spirit